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In an attempt to prove all the identities given in Ramanujan’s first two letters to G. H. Hardy, G. N.
Watson devoted a paper to the evaluation of G

"$&$
. At the end of his paper, Watson remarked that his proof

was not rigorous as he had assumed certain identities (see (1.1) and (1.2)) which he found empirically. In
this paper, we use class field theory, Galois theory and Kronecker’s limit formula to justify Watson’s
assumptions. We shall then use our results to compute some new values of G

n
.

1. Introduction

Let

(a ; q)¢ ¯ 0
¢

n=!

(1®aqn)

and
χ(q)¯ (®q ; q#)¢ for rqr! 1.

S. Ramanujan first introduced the class invariant

G
n
¯ 2−"/%eπon/#%χ(e−πon)

in his famous paper ‘Modular equations and approximations to π ’ [13 ; 14,

pp. 23–39]. In H. Weber’s notation,

G
n
¯ 2−"/%f (o®n).

A table consisting of 50 values of G
n
was first constructed by Weber [19, pp. 721–726].

In the aforementioned paper, Ramanujan added another 31 values to Weber’s list.

For these obvious reasons, we shall call G
n

a Ramanujan–Weber class in�ariant.

In his second letter to G. H. Hardy, Ramanujan recorded the identity [3, p. 62,

no. 23],

G#

"$&$
¯’ (3­o11) (5­3o3) 011­o123

2 1 06817­321o451

4 1"/'

¬0’ 25­3o33

8
­’ 17­3o33

8 1
¬0’ 569­99o33

8
­’ 561­99o33

8 1.
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In an attempt to prove all the identities given in Ramanujan’s two letters to Hardy

[3], G. N. Watson devoted a paper to the evaluation of G
"$&$

[17]. At the end of his

paper [17, p. 132], Watson remarked that his proof was not rigorous, as he had

assumed that
G

"$&$
G

"#$/""

G
%&"/$

G
%"/$$

­
G

%&"/$
G

%"/$$

G
"$&$

G
"#$/""

¯ 15­3o33 (1.1)

and
G

"$&$
G

%&"/$

G
%"/$$

G
"#$/""

­
G

%"/$$
G

"#$/""

G
"$&$

G
%&"/$

¯ "

#
(21­3o33). (1.2)

Despite the lack of rigour in his empirical process, Watson [18] employed it further

to verify other values of G
n

stated explicitly in [13 ; 14, pp. 23–39]. In particular, he

succeeded in verifying the values of G
n
, for n¯ 465, 777, 897, 1645, and 1677 based

on the assumptions of identities similar to (1.1) and (1.2).

The main purpose of this paper is to provide rigorous proofs of the

aforementioned identities for G
n
. We achieve this by justifying Watson’s assumptions.

We shall then use our results to compute some new values of G
n
.

To fix notations, we first recall some facts in algebraic number theory. Let K¯
1(o®m) (where m is squarefree) be an imaginary quadratic field and $

K
be its ring

of integers. Two non-zero $
K

ideals ; and < are said to be equivalent if there exists

an α `Kc²0´ such that ;¯α<. It is known that the set of equivalence classes forms a

group under multiplication of ideals and we call this group, denoted by C
K
, the ideal

class group of K. The order of C
K
, denoted by h

K
, is known as the class number of K.

In Section 2, we shall prove the following.

T 1.1. Let

ν¯
1

2
3

4

4 if 3i pqr,

12 if 3 r pqr.

Suppose that K¯1(o®pqr) satisfies the conditions

(i) p, q and r are distinct primes such that pqr3 1 (mod 4), and

(ii) the class number h
K

¯ 16.

Then

α¯α
p,q,r

¯ 0Gpqr
G

pq/r

G
pr/q

G
qr/p

1
ν

­0Gpqr
G

pq/r

G
pr/q

G
qr/p

1−
ν

,

β¯ β
p,q,r

¯ 0Gpqr
G

pr/q

G
pq/r

G
qr/p

1
ν

­0Gpqr
G

pr/q

G
pq/r

G
qr/p

1−
ν

,

γ¯ γ
p,q,r

¯ 0Gpqr
G

qr/p

G
pr/q

G
pq/r

1
ν

­0Gpqr
G

qr/p

G
pr/q

G
pq/r

1−
ν

,

and
δ¯ δ

p,q,r
¯ (G

pqr
G

pq/r
G

pr/q
G

qr/p
)ν­(G

pqr
G

pq/r
G

pr/q
G

qr/p
)−ν

are algebraic integers belonging to a real quadratic field R `2
K
, where

2
K

Z ²1(om)rm¯ pε
"qε

#rε
$, ε

i
¯ 0 or 1 for i¯ 1, 2, 3´

contains fields such that none of the primes (2), (p), (q) or (r) is inert.

Theorem 1.1 provides an explanation of the existence of identities such as (1.1)

and (1.2).

In Section 3, we shall prove the following.
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T 1.2. Let R¯1(om) be the field which contains α, β, γ and δ. If

2α¯ a
"
­a

#

om, 2β¯ b
"
­b

#

om, 2γ¯ c
"
­c

#

om, 2δ¯ d
"
­d

#

om,

then a
"
, a

#
, b

"
, b

#
, c

"
, c

#
, d

"
and d

#
are positi�e integers.

Theorem 1.2 implies that the determinations of α, β, γ and δ can be done in a finite

number of steps since the number of real quadratic fields to be considered is finite and

the set ²u­�omru, � `.´ is discrete in :[om]. Using Theorems 1.1 and 1.2, we

conclude that Watson’s assumptions are valid. As corollaries to these theorems, we

evaluate G
n

for n¯ 285, 429, 465, 561, 609, 645, 777, 805, 897, 957, 1005, 1045, 1065,

1105, 1113, 1185, 1353, 1605, 1645, 1653, 1677, 1705, 1885, 2013, 2233 and 2737. A

list of the G
n

for n1 465, 777, 897, 1353, 1645, or 1677 is given in Section 4. The

number G
#($(

was first evaluated by D. Shanks [15, p. 399, (8)] using Epstein Zeta

Functions. Readers are encouraged to read Shanks’ paper for a different proof of

G
#($(

.

Theorems 1.1 and 1.2 are natural extensions of results given in [4, Theorems 7.4

and 7.5]. They can be extended to evaluate class invariants G
n

whenever the class

group of K¯1(on) is isomorphic to :
#
G:

#
GIG:

#
G:

%
. For example, when

n¯ 3[5[7[17¯ 1785, we have C1(
o
−"()&)

D:
#
G:

#
G:

#
G:

%
and we find that

G%

"()&
¯023o35­33o17

o2 1"/$ (10o17­9o21)"/$ 0o5­1

2 1 0o3­1

o2 1
¬0o85­9

2 1 0o51­7

o2 1 0o7­o5

o2 1 0o7­o3

2 1 0’ 20­5o15

4

­’ 16­5o15

4 1 0’ 732­189o15

4
­’ 728­189o15

4 1
¬0’ 31­8o15

2
­’ 29­8o15

2 1 0’ 108­27o15

4
­’ 104­27o15

4 1.
In [9], S. Chowla proved that the number of imaginary quadratic fields with k

classes in the principal genus is finite. Applying this result with k¯ 2 indicates that

the number of G
n

which we can compute using the methods mentioned in this paper

is finite. In fact, D. Buell’s table [7], which gives a list of those n less than 2'$ satisfying

the hypotheses in the previous paragraph, shows that we can compute six more G
n
.

The associated imaginary quadratic fields for these six n have the same group

structure as that of 1(o®1785). For the sake of completion, we shall list these values

in Section 5.

2. Proof of Theorem 1.1

From class field theory, we know that there exist an everywhere unramified

extension K (") of K such that

Gal(K (")rK )DC
K
.

This field is usually known as the Hilbert class field or the absolute class field of K.

One can describe the isomorphism explicitly using the j-invariant function (see

Lemma 2.1).
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Let ;¯ [τ
"
, τ

#
] be a $

K
-ideal. Define

j(;)¯ 1728
g$

#
(;)

g$

#
(;)®27g#

$
(;)

,

where

g
#
(;)¯ 60 3

¢

m,n=−¢
(m,n)1(!,!)

1

(mτ
"
­nτ

#
)%

and g
$
(;)¯ 140 3

¢

m,n=−¢
(m,n)1(!,!)

1

(mτ
"
­nτ

#
)'

.

It is clear from the definitions of g
#
([τ

"
, τ

#
]) and g

$
([τ

"
, τ

#
]) that

j([τ
"
, τ

#
])¯ j([1, τ])¯: j(τ),

where τ¯ τ
#
}τ

"
. We will also let

γ
#
(τ)¯ ( j(τ))"/$

with the cube root being real-valued when j(;) is real.

It is well known that K (") ¯K( j($
K
)) [10, Theorem 11.1, p. 220]. If D

K
is the

discriminant of K and 3iD
K
, then K (") ¯K(γ

#
(τ

K
)) [10, Theorem 12.2, p. 249], where

τ
K

¯

1

2
3

4

o®m if D
K

3 0 (mod 4),

3­o®m

2
if D

K
3 1 (mod 4).

These are the facts which lead to the definition of ν given in Theorem 1.1.

We are now ready to state the following lemmas.

L 2.1. Let ; and < be two $
K
-ideals. Define σ;( j(<)) by

σ;( j(<))¯ j(;a <), (2.1)

where ;;a is a principal ideal. Then σ; is a well-defined element of Gal(K (") rK ), and

;*σ; induces an isomorphism

C
K

MNGal(K (") rK ).

Proof. See [10, Corollary 11.37, p. 240].

L 2.2. Let K¯1(o®pqr), where p, q, and r are three distinct primes

satisfying pqr3 1 (mod4), and let ν be as defined in Theorem 1.1. Then Gν

pqr
is a real

unit generating the field K (").

Proof. From [5, p. 290], we find that G"#
pqr

is a real unit of K ("). Since [10,

Theorem 12.17, p. 257]

j($
K
)¯ j(o®pqr)¯

(16G#%
pqr

®4)$

G#%
pqr

, (2.2)

we conclude that
K (") ¯K(G"#

pqr
). (2.3)

Next, suppose that 3i pqr. Then 3iD
K

and γ
#
(τ

K
) generates K ("). From the

equality [10, Theorem 12.17, p. 257]

γ
#
(o®pqr)¯

16G#%
pqr

®4

G)
pqr

and (2.3), we find that G)
pqr

`K ("). Hence, G%
pqr

`K ("), by (2.3).
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R. In [5, p. 290], B. J. Birch quoted M. Deuring’s results [11, p. 43], and

indicated that G
n

is a real unit when n `. and n3 1 (mod4). A more elaborate proof

of this statement can be found in [8, Corollary 5.2]. In fact, from the treatment given

in [8], one can show that G
pq/r

, G
pr/q

and G
qr/p

are units. These facts will be needed in

the proof of Theorem 1.1.

Proof of Theorem 1.1. From the hypotheses, we deduce that N¯ [2,

1­o®pqr], J¯ [p,o®pqr] and K¯ [q,o®pqr] are $
K
-ideals lying in distinct

equivalence classes. This implies that C
K

contains a group :
#
G:

#
G:

#
generated by

the ideal classes [N], [K] and [J]. Using the isomorphism in Lemma 2.1, we conclude

that Gal(K (") rK ) contains the group U¯©σN,σJ,σKª. To show that α, β, γ and δ

belong to a field with degree 2 over K, it suffices to show that σN, σJ and σK fix these

elements. The fact that they are algebraic integers follows from Lemma 2.2 and the

remark after the lemma.

Now, assume that 3 r pqr. From [10, Theorem 12.17, p. 257], we have

j(J)¯ j(o®qr}p)¯
(16G#%

qr/p
®4)$

G#%
qr/p

. (2.4)

By Lemma 2.1, we find that

σJ( j($K
))¯ j(J). (2.5)

From (2.2), (2.4) and (2.5), we find that

(16σ#
J(G"#

pqr
)®4)$

σ#
J(G"#

pqr
)

¯
(16G#%

qr/p
®4)$

G#%
qr/p

. (2.6)

Simplifying (2.6), we deduce that

(a®b) (a­b) ²64(a#­b#) a#b#®48a#b#­1´¯ 0,

where a¯σJ(G"#
pqr

) and b¯G"#
qr/p

. But

64(a#­b#) a#b#®48a#b#­11 0,

for otherwise it would contradict the fact that a and b are algebraic integers. Thus,

σJ(G"#
pqr

)¯³G"#
qr/p

. (2.7)

By a similar argument, we have

σK(G"#
pqr

)¯³G"#
pr/q

. (2.8)

From (2.8) and (2.7), we deduce that both σJ(G"#
pr/q

) and σK(G"#
qr/p

) are defined,

respectively. Using the same argument as in the proof of (2.6), we find that

σJ(G"#
pr/q

)¯³G"#
qp/r

(2.9)

and
σK(G"#

qr/p
)¯³G"#

pq/r
. (2.10)

By (2.7), (2.8), (2.9) and (2.10), we conclude that σJ and σK fix α, β, γ and δ.

Next, from [10, p. 263], we have

j(N)¯ j 03­o®pqr

2 1¯G#%
pqr 0 16

G#%
pqr

®41$. (2.11)

Applying Lemma 2.1 again, we deduce that

σN( j($K
))¯ j(N). (2.12)

By (2.2), (2.11) and a similar argument to that in the proof of (2.6), we find that

σN(G"#
pqr

)¯³G−"#
pqr

. (2.13)
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Using J instead of $
K

in (2.12) and the corresponding expression for j(NJ), we find

that
σN(G"#

qr/p
)¯³G−"#

qr/p
or yG−"#

qr/p
,

that is, σN(G"#
qr/p

) may have the same or opposite sign as σN(G"#
pqr

). We shall show that

the latter case is inadmissible. If

σJ(G"#
qr/p

)¯³G"#
pqr

, σN(G"#
qr/p

)¯yG−"#
qr/p

and (2.13) holds, then

σJ σN(G"#
pqr

)¯³G−"#
qr/p

and σN σJ(G"#
pqr

)¯yG−"#
qr/p

.

This clearly contradicts the fact that σJ σN ¯σN σJ. Similar arguments show that,

corresponding to (2.13), we have

σN(G"#
pr/q

)¯³G−"#
pr/q

, and σN(G"#
pq/r

)¯³G−"#
pq/r

.

Collecting our results, we conclude that σN fixes α, β, γ and δ. This proves the first

part of Theorem 1.1 when 3 r pqr.

The proof when 3i pqr is similar. In this case, G%
pqr

generates K (") and σO(G%
pqr

) is

well defined for O¯J, K, and N. Hence, we may deduce from (2.6) that

16σ#
J(G)

pqr
)®

4

σ#
J(G)

pqr
)
¯ 16G"'

qr/p
®

4

G)
qr/p

. (2.14)

Simplifying (2.14), we have (a®b) (4a#b­4ab#­1)¯ 0, where a¯σJ(G)
pqr

) and b¯
G)

qr/p
. But 4a#b­4ab#­11 0, for otherwise it would contradict the fact that a and b

are algebraic integers. Hence, we deduce that

σJ(G)
pqr

)¯G)
qr/p

.

Now, since σJ `Gal(K (") rK ) and G%
pqr

generates K ("), we find that

σJ(G%
pqr

)¯³G%
qr/p

.

The rest of the arguments are analogous to those of the previous case, and we shall

omit them.

We have already seen that α, β, γ and δ lie in a real quadratic field R. Now, if one

of the primes, say (u)¯ (2), (p), (q), or (r) is inert in R, then the corresponding

Frobenius automorphism σO `Gal(K (") rK ), where O#¯ (u) in K, is trivial. This

contradicts the fact that σO has order 2. For more details, see [4, Theorem 7.3]. This

gives the necessary condition for R and completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

Let C#
K

denote the subgroup of squares in C
K
, and let G

K
be the genus group

C
K
}C#

K
. A group homomorphism χ :G

K
!³1 is known as a genus character. One can

show that a genus character arises from a certain decomposition of D
K
, where D

K
is

the discriminant of K. More precisely, if χ is a genus character, then there exist d
"
and

d
#
satisfying D

K
¯ d

"
d
#
with d

"
" 0 and d

i
3 0 or 1 (mod 4), such that, for any prime

ideal J in K, we have

χ(J)¯

1

2
3

4

0 d
"

N(J)1 , if N(J)i d
"
,

0 d
#

N(J)1 , if N(J) r d
"
,
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where N(J) is the norm of the ideal J and 0[[1 denotes the Kronecker symbol. If [;]

is an ideal class in C
K

and ;¯0JαJ, then we set

χ([;])¯0χ(J)αJ.

L 3.1. Let χ be a genus character arising from the decomposition D
K

¯ d
"
d
#
.

Let h
i
be the class number of the field 1(od

i
), and w

#
be the number of roots of unity

in 1(od
#
), and ε

"
be the fundamental unit of 1(od

"
). Let

F([;])¯ (N([1, τ]))"/# rη(τ)r#,
with

η(z)¯ eπiz/"# 0
¢

n="

(1®e#πinz)

and

τ¯
τ
#

τ
"

, Im τ" 0, where ;¯ [τ
"
, τ

#
].

Then

ε#h"h#/w#

"
¯ 0

[;]`CK

F([;])−χ([;]). (3.1)

Proof. See [16, p. 72, Theorem 6].

From now on, we set K¯1(o®pqr) with h
K

¯ 16. In this case,

G
K

D:
#
G:

#
G:

#
.

Suppose that the principal genus contains [JN], that is, G
!
¯²[$

K
], [JN]´.

Corresponding to this assumption, we know that there exist three genera, say G
"
¯

²[J], [N]´,G
#
¯²[K], [NJK]´, and G

$
¯²[JK], [NK]´. Note that '¯G

!
eG

"
eG

#
eG

$
forms

a subgroup of index 2 in C
K
.

Let # be the set of genus characters such that χ(G
"
)¯®1, χ(G

#
)¯ 1 and

χ(G
$
)¯®1. Note that r#r¯ 2. For any ideal class [;] a', we have

3
χ`#

χ([;])¯ 0,

which implies that

0
χ`#

F([;])−χ([;]) ¯ 1.

Hence, by (3.1), we conclude that

0
χ`'

ε#h"h#/w#

"
¯ 0

χ`#

0
[;]`CK

F([;])−χ([;]) ¯ 0
[;]`'

0
χ`#

F([;])−χ([;])

¯ 0
[;]`'

F([;])−#χ([;]), (3.2)

since r#r¯ 2. If we substitute F([;]) by its infinite product representation and use the

definition of G
n

(see (1.2)), we can rewrite (3.2) as

0Gpqr
G

qp/r

G
qr/p

G
pr/q

1%¯0
χ`#

ε#h"h#/w#

"
. (3.3)
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Next, let #« be the set of genus characters such that χ(G
"
)¯®1, χ(G

#
)¯®1 and

χ(G
$
)¯ 1, then by following the previous argument, we conclude that

0Gpqr
G

pr/q

G
qr/p

G
pq/r

1%¯ 0
χ`#«

ε#h"h#/w#

"
. (3.4)

Since

w
#
¯

1

2
3

4

2 or 4 if 3i pqr,

2, 4 or 6 if 3 r pqr,

we deduce from (3.3) and (3.4) the following lemma.

L 3.2. Suppose that [NJ] is in the principal genus. Then

0Gpqr
G

pq/r

G
qr/p

G
pr/q

1
ν

¯ εe"/#
"

εe#/#
#

and 0Gpqr
G

pr/q

G
qr/p

G
pq/r

1
ν

¯ εe$/#
$

εe%/#
%

,

where the ε
i
are fundamental units in some real quadratic fields and the e

i
are positi�e

integers.

Next, if we assume that [J] is in the principal genus, then by using similar

arguments to those in the proof of Lemma 3.2, we obtain the following lemma.

L 3.3. Suppose that [J] is in the principal genus. Then

0Gpqr
G

qr/p

G
pq/r

G
pr/q

1
ν

¯ εe"/#
"

εe#/#
#

and (G
pqr

G
qr/p

G
pq/r

G
pr/q

)ν ¯ εe$/#
$

εe%/#
%

where the ε
i
are fundamental units in some real quadratic fields and the e

i
are positi�e

integers.

If we replace J in Lemma 3.2 and Lemma 3.3 by K or JK, we obtain four further

lemmas.

L 3.4. Suppose that [NK] is in the principal genus. Then

0Gpqr
G

pq/r

G
pr/q

G
qr/p

1
ν

¯ εe"/#
"

εe#/#
#

and 0Gpqr
G

qr/p

G
pq/r

G
pr/q

1
ν

¯ εe$/#
$

εe%/#
%

,

where the ε
i
are fundamental units in some real quadratic fields and the e

i
are positi�e

integers.

L 3.5 Suppose that [K] is in the principal genus. Then

0Gpqr
G

pr/q

G
pq/r

G
qr/p

1
ν

¯ εe"/#
"

εe#/#
#

and (G
pqr

G
qr/p

G
pq/r

G
pr/q

)ν ¯ εe$/#
$

εe%/#
%

,

where the ε
i
are fundamental units in some real quadratic fields and the e

i
are positi�e

integers.

L 3.6. Suppose that [NJK] is in the principal genus. Then

0Gpqr
G

pr/q

G
pq/r

G
qr/p

1
ν

¯ εe"/#
"

εe#/#
#

and 0Gpqr
G

qr/p

G
pq/r

G
pr/q

1
ν

¯ εe$/#
$

εe%/#
%

,

where the ε
i
are fundamental units in some real quadratic fields and the e

i
are positi�e

integers.
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L 3.7. Suppose that [JK] is in the principal genus. Then

0Gpqr
G

pq/r

G
pr/q

G
qr/p

1
ν

¯ εe"/#
"

εe#/#
#

and (G
pqr

G
qr/p

G
pq/r

G
pr/q

)ν ¯ εe$/#
$

εe%/#
%

,

where the ε
i
are fundamental units in some real quadratic fields and the e

i
are positi�e

integers.

R. Lemmas 3.2–3.7 are natural extensions of theorems discovered by L.

Kronecker [19, pp. 525–547], K. G. Ramanathan [12] and L.-C. Zhang [3, Theorems

3.1, 3.2; 21]. These authors have used their results explicitly to evaluate certain infinite

products related to either the class invariant G
n

or the Rogers–Ramanujan continued

fraction. Here, we shall use Lemmas 3.2–3.7 implicitly without having to determine

the fundamental units involved.

From class field theory, we know that if H is a subgroup of C
K
, then there exists

an abelian and everywhere unramified extension LrK such that

Gal(K (")rK )DH.

In particular, when H¯C#
K
, the corresponding field MrK is known as the genus field

of K. One can show that M is the maximal unramified extension of K which is abelian

over 1 [10, p. 122].

Proof of Theorem 1.2. Let [;
"
] and [;

#
] be two ideal classes in ', and let H¯

©[;
"
], [;

#
]ª. From the previous paragraph, we know that there exists an abelian and

everywhere unramified extension LrK such that Gal(K (")rK )DH. In fact, from the

isomorphism of Lemma 2.1, we find that L¯Fix(©σ;
"

,σ;
#

ª). Since Gal(K (")rK )D
:
#
G:

#
G:

%
, the group Gal(LrK ) is isomorphic to either :

#
G:

#
or :

%
. In the former

case, L is a subfield of M, the genus field of K, and one of the ideal classes in H must

be in the principal genus. As for the latter case, Gal(Lr1)DD
)
, where D

)
is the

dihedral group of eight elements, since L is generalized dihedral over 1 [10, p. 191].

Hence, Gal(Lr1) is non-abelian.

Now, let

α¯ η­η−" where η¯ 0Gpqr
G

pq/r

G
pr/q

G
qr/p

1
ν

.

Then, by assumption, we have

2(η­η−")¯ a
"
­a

#

om. (3.5)

Note that σJK, σNJ and σNK fix η and σJ(η)¯ η−". Therefore, the field LBFix(©σNJ,σNKª)

is of degree 4 over K.

Suppose that Gal(LrK )D:
#
G:

#
. Then, from the beginning of our proof, we

conclude that either [NJ], [NK] or [JK] is in the principal genus. Using either Lemma 3.2,

Lemma 3.4 or Lemma 3.7, which correspond to each of the possibilities, we deduce

that

η¯ εe/#ε«e«/#,

where ε and ε« are fundamental units in certain quadratic fields, and e, e« `.. It is

known that a fundamental unit of a real quadratic field takes the form u­�od with
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u, �" 0 [6, p. 133]. Furthermore, if ou­�od¯ u«od
"
­�«od

#
, then u«, �«& 0.

Collecting these observations, we deduce that η is of the form u
"
­u

#

ol
"
­u

$

ol
#
­

u
%

ol
"
l
#
, where u

i
& 0 for each i. Hence, if

2α¯ 2(η­η−")¯ a
"
­a

#

om,

then a
"

and a
#

must be positive integers since the u
i
are positive.

Next, suppose that Gal(LrK )D:
%
. Recall that Gal(Lr1)DD

)
is non-abelian. We

claim that there exists σ `Gal(LrK ) such that σ(η) is complex. Suppose that the

contrary holds. Then Lf2¯1(η) would be Galois over 1, and hence Gal(Lr1(η))

is a normal subgroup of Gal(Lr1). On the other hand, Gal(1(η)r1)DGal(LrK ), and

is a normal subgroup of Gal(Lr1) [10, p. 191]. Hence, Gal(Lr1) is isomorphic to the

direct sum of Gal(Lr1(η)) and Gal(1(η)r1) and is therefore an abelian group. This

contradicts our initial assumption.

Next, we shall show that σ(om)¯®om. Suppose that the contrary holds.

Then σ(η)­σ(η)−"¯ η­η−", and therefore σ(η) is equal to η or η−". This shows that

σ(η) is real, which contradicts our choice of σ. Now, applying σ to (3.5), we deduce

that

2(σ(η)­σ(η)−")¯ a
"
®a

#

om. (3.6)

From (3.5), (3.6) and the fact that σ(η) is complex, we find that

(a
"
­a

#

om)#& 16 and (a
"
®a

#

om)#! 16.

This implies that 4a
"
a
#

om" 0. Since η" 0, we deduce that a
"

and a
#

are positive.

The integrality of a
"

and a
#

follows easily from Theorem 1.1.

In a similar way, we can show that b
"
, b

#
, c

"
, c

#
, d

"
, and d

#
are positive integers.

Of course, we have to use Lemmas 3.2–3.7, as appropriate.

R. The argument given here for the case when Gal(Lr1) is non-abelian is

due to Weber [10, p. 269].

4. Some �alues of G
n

In this section, we list explicit values of G
n

which are mentioned in the

Introduction. Our computations are done with the aid of Mathematica and

MAPLE V.

G#

#)&
¯’o5­o3

o2
’o5­1

2 0o19­o15

2 1"/% (2o5­o19)"/'

¬0’ 8­o19

4
­’ 4­o19

4 1 0’ 11­2o19

4
­’ 7­2o19

4 1
G#

%#*
¯’o13­3

2
oo13­2o3 0o13­o11

o2 1"/'o73o143­504o3

¬0’ 5­2o3

4
­’ 1­2o3

4 1 0’ 16­9o3

4
­’ 12­9o3

4 1
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G#

&'"
¯099o51­707

o2 1"/' 03o187­41

o2 1"/'’o3­1

o2
’o11­3

o2

¬0’ 13­o33

8
­’ 5­o33

8 1 0’ 53­9o33

8
­’ 45­9o33

8 1
G#

'!*
¯ 0o3­1

o2 1o3o3­2o7(2o7­o29)"/' (13o29­70)"/'

¬0’ 6­o7

4
­’ 2­o7

4 1 0’ 38­13o7

4
­’ 34­13o7

4 1
G#

'%&
¯ 03o5­o43

o2 1"/' 09o3­7o5

o2 1"/' (17o5­38)"/' (320o5­63o129)"/"#

¬0’ 39­3o129

8
­’ 31­3o129

8 1
¬0’ 107­9o129

8
­’ 99­9o129

8 1
G#

)!&
¯’o23­5

o2
’o7­3

o2 021o5­47

2 1"/% 017o5­3o161

2 1"/%

¬0’ 91­7o161

8
­’ 83­7o161

8 1
¬0’ 19­o161

8
­’ 11­o161

8 1
G#

*&(
¯ 01083o11­667o29

o2 1"/' 055o29­171o3

o2 1"/' (13o29­70)"/'

¬(16o29­15o33)"/"# 0’ 23­3o33

8
­’ 15­3o33

8 1
¬0’ 195­33o33

8
­’ 187­33o33

8 1
G

"!!&
¯ 07o5­9o3

o2 1"/' 011o5­3o67

o2 1"/' (17o5­38)"/'

¬(17176o5­2709o201)"/"#

¬0’ 43­3o201

4
­’ 39­3o201

4 1
¬0’ 387­27o201

8
­’ 379­27o201

8 1
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G#

"!%&
¯’ 3o11­o95

2
o2o5­o19’ 5o5­11

2
o3o5­2o11

¬0’ 20­5o11

4
­’ 16­5o11

4 1 0’ 7­2o11

2
­’ 5­2o11

2 1
G#

"!'&
¯oo3­2’o5­3

2
(82o71­309o5)"/' (37o71­180o3)"/'

¬0’ 17­4o15

4
­’ 13­4o15

4 1
¬0’ 235­60o15

4
­’ 231­60o15

4 1
G#

""!&
¯ 0’ 31­o1105

8
­’ 23­o1105

8 1 0’ 41­o1105

8

­’ 33­o1105

8 1 0’ 109­3o1105

8
­’ 101­3o1105

8 1
¬0’ 173­5o1105

8
­’ 165­5o1105

8 1
G#

"""$
¯ (o3­2)o3o3­2o7 (25o53­182)"/' (11o7­4o53)"/'

¬0’ 9­2o7

4
­’ 5­2o7

4 1 0’ 197­74o7

4
­’ 193­74o7

4 1
G#

"")&
¯ (o3­2) (17o5­38)"/' (4o5­o79)"/'’ 5o3­o79

2

¬0’ 21­2o79

4
­’ 17­2o79

4 1 0’ 341­38o79

4

­’ 337­38o79

4 1
G#

"'!&
¯ (305o5­682)"/' (1281o321­10264o5)"/"#

¬03409o5­4401o3

o2 1"/' 0569o5­123o107

o2 1"/' 0’ 19­o321

8

­’ 11­o321

8 1 0’ 2207­123o321

8
­’ 2199­123o321

8 1
G#

"'&$
¯(4984o29­3555o57)"/"# (13o29­70)"/' 021o19­17o29

o2 1"/'

¬0171o3­55o29

o2 1"/' 0’ 755­99o57

8
­’ 747­99o57

8 1
¬0’ 975­129o57

8
­’ 967­129o57

8 1
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G#

"(!&
¯’ 5o11­3o31

2 0o11­3

o2 1o5o5­2o31’ 13o5­29

2

¬0’ 30­5o31

4
­’ 26­5o31

4 1
¬0’ 54­9o31

4
­’ 50­9o31

4 1
G#

"))&
¯ 0o13­3

2 1 0o5­3

2 1 05o29­27

2 1 (3o29­2o65)

¬0’ 242­30o65

4
­’ 238­30o65

4 1
¬0’ 121­15o65

8
­’ 113­15o65

8 1
G#

#!"$
¯ (5040o3­337o671)"/"# 031o61­73o11

o2 1"/'’ 5o61­39

2

¬o2o61­9o3 0’ 38­20o3

4
­’ 34­20o3

4 1
¬0’ 1303­750o3

4
­’ 1299­750o3

4 1
G#

##$$
¯o5o7­4o11oo29­2o7 0o11­3

o2 1 0o29­5

2 1
¬0’ 73­4o319

4
­’ 69­4o319

4 1
¬0’ 643­36o319

4
­’ 638­36o319

4 1
G#

#($(
¯ 0’ 325­25o161

8
­’ 317­25o161

8 1 0’ 397­31o161

8

­’ 389­31o161

8 1 0’ 623­49o161

4
­’ 619­49o161

4 1
¬0’ 2533­199o161

8
­’ 2525­199o161

8 1

5. Values of G
n

with C1(o−n)
D:

#
G:

#
G:

#
G:

%

From Buell’s table [7], we find that for n! 2'$, C1(o−n)
D:

#
G:

#
G:

#
G:

%

when n¯ 1785, 2145, 3045, 3705, 4305, 4845, and 5005. Note that n¯ pqrs where p,

q, r, and s are distinct primes. To compute the G
pqrs

for these seven n, we consider the
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eight expressions analogous to α, β, γ and δ defined in Theorem 1.1. One such example

is

0Gpqrs
G

pq/rs
G

pr/qs
G

ps/qr

G
pqr/s

G
prs/q

G
pqs/r

G
qrs/p

1
ν

­0Gpqr/s
G

prs/q
G

pqs/r
G

qrs/p

G
pqrs

G
pq/rs

G
pr/qs

G
ps/qr

1
ν

. (5.1)

Using similar reasonings as in Theorems 1.1 and 1.2, we conclude that the eight

expressions, one of which is given in (5.1), are of the form a­bom with a, b" 0. We

then proceed to compute G
pqrs

. The following list contains the remaining six values

of G
n
:

G%

#"%&
¯ 023o143­123o5

o2 1"/$ (5o13­18)"/$ 0o15­o13

o2 1 07o3­o143

2 1
¬0o5­3

2 1 0o11­3

o2 1 0o3­1

o2 1 0o15­o11

2 1 0’ 8­o55

4

­’ 4­o55

4 1 0’ 8212­1107o55

4
­’ 8208­1107o55

4 1
¬0’ 62­8o55

4
­’ 58­8o55

4 1
¬0’ 358­48o55

4
­’ 354­48o55

4 1
G%

$!%&
¯ (63o15­244)"/$ (78o29­71o35)"/$’ 11o5­o609

2 0o5­3

2 1
¬0o21­5

2 1 0o29­5

2 1 03o3­o29

o2 1 0o7­3

o2 1
¬0’ 25­o609

8
­’ 17­o609

8 1
¬0’ 8292­336o609

4
­’ 8288­336o609

4 1
¬0’ 50­2o609

4
­’ 46­2o609

4 1
¬0’ 164733­6675o609

8
­’ 164725­6675o609

8 1
G%

$(!&
¯ (8o19­9o15)"/$ 0o5­o247

o2 1"/$ 09o3­o247

2 1 03o19­13

o2 1
¬(o5­2) 0o15­o13

o2 1 03o13­11

2 1 03o3­5

o2 1
¬0’ 344­55o39

4
­’ 340­55o39

4 1
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¬0’ 1950­312o39

4
­’ 1946­312o39

4 1
¬0’ 20­3o39

4
­’ 16­3o39

4 1
¬0’ 177552­28431o39

4
­’ 177548­28431o39

4 1
G%

%$!&
¯ 0o3­1

o2 1 0o7­o5

o2 1 0243o123­2695

o2 1 059o289­447o5

o2 1
¬(o5­2) 0o21­5

2 1 07o21­5o41

2 1 03o205­43

2 1
¬0’ 28437­2775o105

2
­’ 28435­2775o105

3 1
¬0’ 217­21o105

8
­’ 209­21o105

8 1
¬(o369­36o105­o368­3o105)

¬0’ 565­55o105

2
­’ 563­55o105

2 1
G%

%)%&
¯ (139o85­294o19)"/$ (41o85­378)"/$’ 3o255­11o19

2 0o17­o15

o2 1
¬(o5­2) (2o5­o19) (o15­4) 0o285­17

2 1
¬0’ 35­8o19

4
­’ 31­8o19

4 1
¬0’ 267289­61320o19

4
­’ 267285­61320o19

4 1
¬0’ 125­28o19

4
­’ 121­28o19

4 1
¬(o268753­61656o19­o268752­61656o19)

G%

&!!&
¯’ 9o55­7o91

2
(3o5­2o11) 0o13­3

2 1 0o7­3

o2 1
¬03o7­o65

o2 1 05o5­11

2 1 0o13­o11

o2 1 0o77­9

2 1
¬0’ 1337­140o91

2
­’ 1335­140o91

2 1
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¬0’ 24202­2537o91

4
­’ 24198­2537o91

4 1
¬0’ 2110­221o91

4
­’ 2106­221o91

4 1
¬0’ 139277­14600o91

2
­’ 139275­14600o91

2 1 .
R. It is interesting to note that our methods can be used to compute G

n

whenever the class groups of 1(o®n) has one class per genus. Assuming the

generalized Riemann hypothesis, P. J. Weinberger [20] showed that Q(o®1365) is

the only imaginary quadratic field with C1(o−"$'&)
D:

#
G:

#
G:

#
G:

#
. To compute

G
"$'&

, we simply follow the computations of G
n

in this section. The only difference is

that we obtain rational integers for expressions such as (5.1) instead of real quadratic

numbers. Of course, the above value can be obtained directly from Kronecker’s Limit

Formula.
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